Agglomerative Hierarchical Clustering(AHC)

层次聚类算法

层次聚类算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程。简单的说层次聚类的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间的相似性,距离越小,相似度越高。并将距离最近的两个数据点或类别进行组合,生成聚类树。

假设有N个待聚类的样本,对于层次聚类来说,基本步骤就是:

1)(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度;
2)寻找各个类之间最近的两个类,把他们归为一类(这样类的总数就少了一个);
3)重新计算新生成的这个类与各个旧类之间的相似度;
4)重复2和3直到所有样本点都归为一类,结束。

合成聚类
整个聚类过程其实是建立了一棵树,在建立的过程中,可以通过在第二步上设置一个阈值,当最近的两个类的距离大于这个阈值,则认为迭代可以终止。另外关键的一步就是第三步,如何判断两个类之间的相似度有不少种方法。

距离计算方法

两个点(点集)的相似通过欧式距离计算得出

数据点与点集间的距离计算方式:

将数据点B与数据点C进行组合后,重新计算各类别数据点间的距离矩阵。数据点间的距离计算方式与之前的方法一样。这里需要说明的是点集(B,C)与其他数据点间的计算方法。当我们计算(B,C)到A的距离时,需要分别计算B到A和C到A的距离均值。

数据点与点集距离计算公式

两个组合数据点间的距离计算方式:

计算两个组合数据点间距离的方法有三种,分别为Single Linkage,Complete Linkage和Average Linkage。在开始计算之前,我们先来介绍下这三种计算方法以及各自的优缺点。

Single Linkage
Single Linkage的计算方法是将两个数据点集中距离最近的两个数据点间的距离作为这两个点集的距离。这种方法容易受到极端值的影响。两个很不相似的点集可能由于其中的某个极端的数据点距离较近而组合在一起。

Complete Linkage

Complete Linkage的计算方法与Single Linkage相反,将两个点集中距离最远的两个数据点间的距离作为这两个点集的距离。Complete Linkage的问题也与Single Linkage相反,两个相似的组合数据点可能由于其中的极端值距离较远而无法组合在一起。

Average Linkage

Average Linkage的计算方法是计算两个点集中的每个数据点与其他所有数据点的距离。将所有距离的均值作为两个点集间的距离。这种方法计算量比较大,但结果比前两种方法更合理。这种聚类的方法描述起来比较简单,但是计算复杂度比较高,为了寻找距离最近/远和均值,都需要对所有的距离计算个遍,需要用到双重循环,每次迭代都只能合并两个子类,这是非常慢的。

两个点(点集)的相似通过jaccard距离计算得出

可以将点集按照一定的变换方式将原始的数据映射的{0,1}或者{0,1,2}这些空间中,以{0,1}空间为例,所有的点集中包含的数据只有0,1,jaccard distance定义如下:

这里写图片描述

主要就是计算两个点集的相似性的,如果两个点集完全独立,那么J距离为1,如果两个点集非常相近,那么J距离趋近于0。然后我们就可以直接通过最后的J距离判断这两个点集是否进行融合。

值得一提的是,因为这里映射的空间是{0,1}空间,我们知道在计算中的最原始的计数是二进制,如果直接进行0和1的比较操作速度是非常快的。Brief描述子的提出也就是基于这方面的考虑。

部分参考:http://www.jianshu.com/p/785bb19386db但该链接文章中有部分错误。

参考文献:

[1]Toldo R, Fusiello A. Robust Multiple Structures Estimation with J-Linkage[C]// European Conference on Computer Vision. Springer-Verlag, 2008:537-547.

  • 9
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 聚合层次聚类(Agglomerative Clustering)是一种常见的聚类算法,其基本思想是将数据逐渐合并成更大的类别,直到达到预定的聚类数目为止。 具体来说,聚合层次聚类从每个数据点作为单独的类别开始,然后根据相似度指标,将最相似的两个类别合并成一个新的类别,直到所有数据点都属于同一个类别或者达到预设的聚类数目。 聚合层次聚类可以通过不同的相似度指标来度量不同类型的数据之间的相似性,常用的相似度指标包括欧几里得距离、曼哈顿距离、余弦相似度等。在合并过程中,可以采用不同的合并策略,如单链接、完全链接、平均链接等。 聚合层次聚类通常需要计算全部的数据点之间的相似度,因此计算复杂度较高。但它具有易于理解和可视化的优点,可以通过树状图表示聚类过程,帮助用户更好地理解聚类结果。 ### 回答2: 凝聚聚类是一种常见的聚类方法,也被称为自下而上聚类。该算法从一个初始状态开始,每次将最接近的数据点或群体合并在一起,不断地形成丰富的层次化结构,最终形成聚类。凝聚聚类的主要特点是可以在未知初始聚类数的情况下自动确定聚类数量。 凝聚聚类的工作原理很简单。首先,它计算每个样本之间的相似度或距离并将它们作为起点。然后,聚类一步步合并这些相邻点,直到所有点都被聚类成一组。 凝聚聚类通常有两种方法来评估点(或者样本)之间的距离: 1. 层次聚类 层次聚类的倾向是使得最小群组最大化或者最大群组最小化。层次聚类的步骤通常是计算每个点之间的距离,然后将最近的点成对合并在一起,这样就形成了一个群组。接下来,再将最相似的群组再次合并,直至最终只剩一个群组。 2. 相关聚类 相关聚类评估数据点之间的相似度。最常见的方法是基于距离度量作为相似性的函数。相关聚类与层次聚类十分相似,不同之处在于在相关聚类中,每个群组都是基于它们之间的相似性。 凝聚聚类的主要优点是可以自动识别出稠密和疏散聚类,并且可以处理噪声和异常点,但是其计算和内存开销均比较大。在实际使用中,还需要根据具体情况选择合适的距离函数,以便得到最优的聚类结果。 ### 回答3: 聚合性聚类是一种基于相似性度量的无监督学习算法,也称为自下而上聚类。在聚合性聚类中,每个数据点被视为一个单独的簇,然后簇之间通过相似性度量来逐步合并,以形成完整的层次结构,直到所有簇合并成为一个单一的簇。 聚合性聚类算法通常包括以下步骤: 1. 初始化:将每个数据点视为一个单独的簇。 2. 相似性度量:对于每对簇,计算它们之间的相似性得分。 3. 合并:通过选择得分最高的簇对来合并簇,将它们合并成一个新的簇。 4. 重复上述步骤,直到所有簇都被合并为一个单独的簇。 在聚合性聚类的过程中,相似性度量是关键因素。常用的相似性度量包括欧几里德距离、曼哈顿距离和马氏距离等。根据不同的数据类型和应用场景,我们可以选择不同的相似性度量来进行聚类。 聚合性聚类的一个重要应用是图像分割。在这种情况下,数据点是像素,而相似性度量可以基于像素之间的亮度、颜色和纹理等特征进行计算。通过聚合性聚类,我们可以将图像分割成不同的区域,从而提取出有用的图像特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值